
 1

DAYTIME WATER DETECTION AND LOCALIZATION FOR UNMANNED GROUND 
VEHICLE AUTONOMOUS NAVIGATION 

 
 

A. L. Rankin* and L. H. Matthies 
Jet Propulsion Laboratory, California Institute of Technology 

4800 Oak Grove Drive, Pasadena, CA, USA 91109 
 
 

ABSTRACT 
 

Detecting water hazards is a significant challenge to 
unmanned ground vehicle autonomous off-road 
navigation.  This paper focuses on detecting and 
localizing water bodies during the daytime using a stereo 
pair of color cameras.  A multi-cue approach is taken.  
Evidence of the presence of water is generated from color, 
texture, and the detection of terrain reflections in stereo 
data.  A ground detection algorithm is used to estimate the 
elevation of detected water bodies and locate them within 
instantaneous and world terrain maps.  Temporal filtering 
in a world map suppresses false detections and relocates 
detected water as water body elevation estimates improve.  
This software has been implemented into a run-time 
passive perception system on an unmanned ground 
vehicle and tested at Ft. Indiantown Gap, PA. 
 

1. INTRODUCTION 
 

Perception systems for unmanned ground vehicles 
(UGVs) identify and locate terrain that is hazardous to 
traverse (Bellutta et al., 2000; Rankin et al., 2005a).  
Hazardous terrain can be identified as binary obstacles 
(Rankin et al., 2005b) or can be assigned a traversability 
cost (Lacaze et al., 2002).  Water bodies are challenging 
terrain hazards for several reasons. Traversing through 
deep water bodies could cause costly damage to the 
electronics of UGVs.  Additionally, a UGV that is either 
broken down due to water damage or stuck in a water 
body during an in-theater autonomous mission may 
require rescue, potentially drawing critical resources away 
from the primary mission and soldiers into harms way.  
Thus, robust water detection is a critical perception 
requirement for UGV autonomous navigation. 

 
In (Matthies et al., 2003), we cataloged the 

environmental variables affecting the properties and 
conditions of surface water, and discussed the sensors 
applicable to detecting it under each condition.  The 
appearance of water can greatly vary, depending upon the 
color of the sky, the level of turbidity, the time of day, 
and the presence of wind, terrain reflections, underwater 
objects visible from the surface, surface vegetation, and 
shadows.  The large number of possible scenarios and 
appearances of water makes water detection particularly 
challenging using a single cue.  Although laser sensors, 
commonly used for UGV autonomous navigation, often 

get no return value on free-standing water (Hong et al., 
1998), fusing laser cues for water with color cues for 
water can increase water detectability (Hong et al., 2001). 

 
Because there are military operations when it may be 

desirable for UGVs to operate without emitting strong, 
detectable electromagnetic signals, a passive perception 
solution to water detection is desirable.  In (Rankin and 
Matthies, 2004), we described a strategy for extracting 
and fusing multiple cues for water from a stereo pair of 
color cameras.  To be useful to autonomous navigation, 
however, water detection results must also be accurately 
transferred to a world map where vehicle level path 
planning decisions are made.  In this paper, we focus on 
multi-cue water detection and the accurate placement of 
detected water into instantaneous and world terrain maps.  
Temporal filtering in the world map suppresses false 
detections and relocates water as water body elevation 
estimates improve. 

 
Figure 1 illustrates the class of UGV this work has 

been tested on and a severe water hazard from a test range 
at Ft. Indiantown Gap, PA.  In the following section, we 
summarize our approach to passive perception based 
multi-cue water detection. 
 

 
Figure 1.  An experimental unmanned vehicle (XUV) 
navigating on a flooded portion of a road on a test 
range at Ft. Indiantown Gap, PA. 
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2. WATER DETECTION APPROACH 
 

Because of the multiple appearances of water, a 
multi-cue approach to water detection is desirable.  In 
(Rankin and Matthies, 2004), we described techniques 
applicable to detecting water hazards during the daytime 
using passive sensors, and a strategy for fusing multiple 
water detection cues into a terrain map, from which a 
UGV can perform autonomous navigation.  Here, we 
summarize the approach and describe some improvements 
to the algorithm. 

 
The multi-cue water detector uses a rule base to combine 
water cues from color, texture, stereo range reflections, 
and zero stereo disparity.  Hue, saturation, and brightness 
levels are thresholded to generate the water cue from 
color.  These thresholds are tuned to detect sky reflections 
in water.  Local image intensity variance is thresholded to 
generate the water cue from texture.  Stereo range data is 
analyzed to detect patterns consistent with range 
reflections (for example, stereo range data on reflections 
of trees and other terrain extends below the ground 
surface).  Zero disparity pixels can also provide evidence 
of a reflection.  Zero disparity occurs when the stereo 
correlator matches the same column in rectified left and 
right images.  When zero disparity pixels occur in the 
lower half of the disparity image, it is likely caused by 
reflections of objects that are far away (such as clouds or 
tree lines).  Thus, zero disparity pixels can be a reflection-
based water cue. 
 

Figure 2 illustrates multi-cue water detection.  The 
water body in the scene in the upper left image contains 
reflections of the sky and clouds, and reflections of trees 
and other ground cover.  In addition, the leading edge of 
the water body is not visible in the scene.  The blue 
regions show the water cue from color (upper right), 
texture (middle left), stereo range reflections (middle 
right), and zero stereo disparity (lower left).  The lower 
right image shows the fused water detection image.  A 
union of the four water cues is performed, eliminating 
regions that are either above the ground or horizon, small, 
or contain an invalid combination or proportion of water 
cues, according to the rule-base described in (Rankin and 
Matthies, 2004).  
 

An advantage of using a multi-cue approach is that 
each cue can be designed to target a specific water 
attribute.  Perfect detection of an entire water body is thus 
not expected by any single cue.  The fusion of water cues 
enhances detection of water bodies with multiple 
attributes.  The rules for fusing the water cues are 
designed to maximize water body detection while 
minimizing false detection.  Since (Rankin and Matthies, 
2004), the water detection algorithm has been improved 
in two primary ways: a new approach to detecting the 
ground surface has been implemented and close detection 

regions from a single cue are connected prior to multi-cue 
fusion. 
 

 

 

 
Figure 2.  A multi-cue water detection approach is 
implemented.  A rule-base is used to merge cues from 
color (upper right), texture (mid left), stereo 
reflections (mid right) and zero stereo disparity (lower 
left).  In the fused water detection image (lower right) 
blue = single cue, magenta = two cues, red = 3 cues, 
yellow = 4 cues. 

In the past, we’ve used a simple and fast way to 
determine the ground height near the leading edge of a 
candidate water body.  For each column in a stereo range 
image, we stepped up the column looking for the first 
point that contains a significant change in range and 
height.  This simple technique has worked well when the 
ground is fairly smooth.  But when the ground contains 
vegetation that is not short, this technique is susceptible to 
failure.  To address this problem, a new ground detector 
has been implemented that applies two criteria for finding 
the ground: 1) we expect the elevation variance to be low 
on the ground, and 2) we expect to find ground near the 
local minimum elevation.   
 

To apply the first criteria, we create a 50m grid map 
and bin the range data into course voxels.  Then we find 
the mode elevation for each grid cell and threshold 
elevation variance for the range data close to the mode 
elevation.  Where there are vertical structures, such as 
trees, we expect the elevation variance to exceed the 
selected threshold.  The mode elevation for grid cells 
containing vertical structure may very well be above the 
ground.  Thus, mode elevation alone is not sufficient to 
locate the ground.  We apply the second criteria to 
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determine if the mode elevation is close to the minimum 
elevation.  To apply the second criteria, we generate a 
radial minimum elevation map that contains circular 
swaths centered on the vehicle’s current position.  Each 
radial swath is 2 meters wide.  The minimum elevation 
map is filtered for spikes and interpolation is used to fill 
gaps.  Figure 3 illustrates the pixels detected as part of the 
ground for a scene containing a large puddle.  Accurate 
ground detection helps to isolate and eliminate false water 
detection (as water cannot occur above the ground 
surface). 
 

 
Figure 3.  Ground detection around the boundary of a 
water body is used to estimate the elevation of the 
water body. 

 
Figure 4.  To improve the detection of thin water 
regions in image space (upper left), close cues are 
connected prior to region size filtering (upper right).  
The lower left and right images show water detection 
without and with this extra step, respectively. 

A second modification to the algorithm has improved 
the detection of water bodies that are narrow in image 
space.  Figure 4 shows water detection results for a 
particularly challenging water body that is narrow in 
image space and contains tall vegetation growing through 
the surface.  Here, the predominant water cue is from 
color.  Because detection regions are fragmented, the 
lower left fused water detection result is fragmented.  But 
by joining close color cue regions prior to fusion (upper 
right image), the thin water regions in image space are 
preserved during fusion (lower right).  In the following 
section, we discuss localizing detected water in terrain 

maps that can be used to plan safe paths during 
autonomous navigation. 
 

3. WATER LOCALIZATION IN TERRAIN MAPS 
 

Stereo reconstruction of water surfaces is not trivial 
due to water’s specular reflectance and refractive nature.  
Thus, the stereo range data for water detection pixels 
cannot be directly used to determine the elevation of 
water.  We estimate the elevation of water bodies by 
averaging the elevation of the detected ground surface 
around the perimeter of the fused water detection regions.  
Figure 5 illustrates the localization of a detected water 
body.  Stereo range data (upper right) is used to locate the 
ground surface.  The ground surface is then used to give 
each water detection pixel an elevation in an 
instantaneous terrain map.  (An instantaneous terrain map 
is a snapshot of the terrain, generated from a single stereo 
pair of images.) 
 

 

 
Figure 5. Water detection results transferred to a 50m 
instantaneous traversability cost map (lower left) and 
a 100m world traversability cost map (lower right) for 
the scene in the upper left image, and the 512x384 
stereo range image (upper right). 

The lower left image in Figure 5 shows a 50m x 50m 
birds-eye view of an instantaneous traversability cost map 
for the scene in the upper left image.  A traversability cost 
for each cell was generated by using the stereo range data 
to determine the local slope and height of the terrain.  
Green terrain has a low traversability cost, red terrain is 
non-traversable, intermediate colors between green and 
red have an intermediate traversability cost, and blue 
represents water.  The rings are in 10m increments.  
Instantaneous terrain maps are fused into a single 100m x 
100m vehicle centered world map.  This map retains a 
history of the terrain the vehicle has recently “seen”.  
Information beyond 50m of the vehicle’s current position, 
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however, falls off the world map to make room for new 
data.  The lower right image in Figure 5 shows a birds-eye 
view of the world traversability cost map. 
 

 
Figure 6. Traversability cost (green-red) and water 
detection (blue) overlaid on the upper left intensity 
image in Figure 5.  Green has low traversability cost 
and red has high traversability cost. 

 
Figure 7. 3D rendering of the world map for the scene 
in Figure 5. 

Figure 6 shows a representation of the instantaneous 
traversability cost map in Figure 5 projected into image 
space.  Figure 7 shows a 3D representation of the world 
traversability cost map that corresponds to the scene in 
Figure 5.  To suppress false water detection and noisy 
traversability cost, temporal filtering is performed in the 
world traversability cost map in a couple of ways.  
Although a history of water detection information from 
recent instantaneous traverasbility cost maps are 
maintained in the world traversability cost map at a low 
level, detected water is not output by the world 
traversability cost map until it has been “seen” at least 
twice in the instantaneous traversability cost maps.  In 
addition, the last N=3 traversability costs for each cell in 
the world traversability cost map is averaged. 

In the water detection and localization example in 
Figures 5-7, the UGV approached the water body normal 
to it.  To autonomously navigate around a water body that 
is in a UGV’s path, however, water bodies must also be 
detected while traveling parallel to them.  Figure 8 shows 
a large pond at Ft. Indiantown Gap from a distance, and 
up close when traveling parallel to it.  Figure 9 shows 
example water detection and localization results from 
traveling parallel to the water’s edge.  The upper left 
image contains multi-cue water detection results, the low 
left image contains a 320x240 stereo range image, the 
upper right image contains a 25m instantaneous terrain 
map, and the lower right image contains a 50m world 
map.  In the maps, the blue regions indicate the location 
of the detected water.  Note that there is a lapse in water 
detection in the world map. This occurred when the UGV 
momentarily steered away from the pond (causing the 
pond to leave the field of view).  Despite the lapse, there 
is sufficient information in the world map to keep the 
UGV from trying to plan a path through the water body.  
 

 
Figure 8. In order to autonomously navigate around a 
water body in the path of a UGV, it needs to be 
detected while moving perpendicular (left) and 
parallel (right) to it. 

 

 
Figure 9. Example water detection and localization 
result while moving parallel to a water body.  Also 
shown is a 320x240 stereo range image (lower left), a 
25m instantaneous map (upper right), and a 50m 
world map (lower right). 
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4. RE-LOCALIZING WATER IN A WORLD 
MODEL 

 
We rely on locating the ground surrounding a water 

body to estimate the elevation of a water body.  When a 
water body’s elevation is incorrect, the location of a water 
body in the world map will be incorrect.  This is 
illustrated in Figure 10.  While overestimating the 
elevation of a water body (case A) leads to locating the 
water body closer to the UGV, underestimating the 
elevation leads to locating the water body further from the 
UGV (case C).  Underestimating the water body elevation 
also leads to oversizing the water body. 
 

 
Figure 10. When the elevation of a water body is 
overestimated (A), the leading edge of the water body 
appears closer than it really is.  When the elevation of 
a water body is underestimated (C), the trailing edge 
of the water body appears further than it really is. 

Multi-cue water detection can occur at distances 
beyond which stereo range data is available.  When this 
occurs, the closest ground elevation is used to estimate the 
elevation of detected water, resulting in poorer water 
localization at far range with improving water localization 
as a water body is approached.  To avoid oversizing water 
bodies in the world map as a result of poor water 
localization at far range, the elevation and location of a 
water body is updated in the world map each cycle in real 
time.   

 
Figure 11 illustrates the benefits of re-localizing 

water during a long drive up to a water pond’s leading 
edge.  The upper right image shows the multi-cue water 
detection for the scene in the upper left image.  This 
image is the final frame in the drive up to the water body.  
In the world map in the bottom image, yellow represents 
all the map cells detected as water during the drive, and 
blue represents the map cells containing water after 
updating the water’s location.  Without re-localizing the 

detected water in the world map, the world map would 
indicate the UGV is in the water at the end of the drive, 
when clearly it is not. 
 

 

 
Figure 11. An example of relocating detected water in 
the world map over time as the water’s elevation 
estimate improves.  In the world map in the second 
row, yellow indicates cumulative water placement 
during a head on approach. Blue indicates water 
placement after relocalization.  Note that without 
water relocalization, the world map indicates the UGV 
is in the water in the last frame (first row), when 
clearly it is not. 

 
CONCLUSIONS 

 
Robust water detection is a critical perception 

requirement for UGV autonomous navigation.  In this 
paper, we have summarized an approach to detecting 
water hazards during the daytime using passive sensors 
and localizing them in instantaneous and world maps 
from which a UGV can perform autonomous navigation.  
Our multi-cue water detector uses a rule base to combine 
water cues from color, texture, stereo range reflections, 
and zero stereo disparity.  It is robust to narrow water 
regions in image space.  In addition, it rejects small 
regions, regions above the ground or horizon, and regions 
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that contain an invalid combination or proportion of water 
cues. 

 
Because of water’s specular reflectance and refractive 

nature, stereo yields unreliable range data on the surface 
of water for water localization purposes.  We estimate the 
elevation of a water body by averaging the elevation of 
the detected ground surface around the perimeter of the 
fused water detection region.  Using this elevation, water 
is transferred to instantaneous and world maps.  Temporal 
filtering in the world map is used to suppress false 
detections and relocates detected water as water body 
elevation estimates improve.  This software has been 
implemented into a run-time passive perception system on 
a UGV and tested on a 6.9km robotic vehicle test course 
(called the Forever Loop) at Ft. Indiantown Gap, PA. 
 

The Forever Loop consists of dirt and gravel trails 
that weave through cross country terrain containing 
forested regions, flat and hilly regions, tall and short 
vegetation, and several ponds (one of which is shown in 
Figure 8).  In March 2006, 12,265 stereo image pairs were 
collected during XUV teleoperation of the entire course.  
During this time of year, the ponds were all dry, but there 
were three puddles on the course.   All three of the 
puddles were consistently detected.  Two small 
traversable puddles were detected in 12 consecutive world 
maps, starting at a distance of 7 meters.  A larger 
traversable puddle (shown in Figure 5) was detected in 59 
consecutive world maps, starting at a range of 13 meters. 
False positive water detection occurred in 26 of the 
12,265 world maps (0.2%).  In 24 of these maps, the false 
positive water detection occured on nontraversable log 
barriers lining the sides of a trail.  In the other 2 world 
maps, the false positive water detection occurred in tall 
vegetation lining the side of a trail.  On a Linux Dell 
Precision computer containing an Intel Xeon 3.4GHz 
processor, the water detection and localization software 
runs at approximately 1Hz when stereo images are 
processed at a resolution of 512x384 pixels. 
 

FUTURE WORK 
 
 In fiscal year 2007, we have proposed to extend the 
range of water detection by performing reflection 
detection in the visible imagery, and to address the 
problem of detecting mud hazards with UGV sensors.  In 
addition, we will use the shape and size of a detected 
water body to estimate the level of hazard it poses to a 
UGV. 
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